If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+16c+63=0
a = 1; b = 16; c = +63;
Δ = b2-4ac
Δ = 162-4·1·63
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2}{2*1}=\frac{-18}{2} =-9 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2}{2*1}=\frac{-14}{2} =-7 $
| 4x+(2.4-2x)=22.8 | | 7.23x4.2=30.366 | | 7.23=4.2x | | 5x-12=2x+23 | | 2x-8+90+40=180 | | 7(w-5)-2=-3(-8w+7)-5w | | 10x-6+90+36=180 | | -3(w-5)=-6w+12 | | 10=-2y+6(y+7) | | 25=3(-2/7c) | | 3a-7=2A+2.8 | | .3a-7=2A+28 | | 180=9k+6+4k+5 | | 22x+1376=204 | | 90=6s-8+8s | | X^5-72=x | | 4x-5(4-x)=12x-20-3x | | -9(-1+9x)-6=-96 | | 7(2p+1)-4(3p+2=0 | | 12/x+7=6/5 | | 10-8x=43 | | 31/2+4/y=7 | | 4-8=-3f | | 47-x=5x-3=180 | | 8x+1+x+1=10x-5 | | 4.9(x^2)=78 | | 3(2x-5)=-0.5(-12x+30) | | 55.00+8.50n=123 | | 9x-11+3x=11x+8 | | 10x-5x-36=0 | | (7x+5)+98=180 | | (7x-13)+(6x+8)=180 |